
 

1/46 

 
Computational Design Strategies in Revit: Building Complex Forms Using Dynamo 
Suleiman Alhadidi & Geoff Kimm  
 
 
 
Summary:  
This session will introduce how to visually script geometries using Dynamo in Revit. 
Participants will explore how Dynamo can be used as a tool for studying complex forms and 
creating parametric morphologies. 
 
Prerequisites: 
There is no prerequisite for this workshop but we expect that this workshop is dedicated to 
expert level in Revit. We recommend that you install Dynamo and you introduce yourself to 
the massing environment in Revit/Vasari and the adaptive components. 
 
Key Learning Outcomes: 
1. Learn how to use Dynamo in Revit. 
2. Learn how to divide design problems into logical solution using visual scripting. 
3. Learn how to build parametric complex forms using scripting.

 
 

 

 
   www.onstudio.co  



 

2/46 

About the speakers:  
 
 
SULEIMAN ALHADIDI is an architect, researcher and artist. He is currently working as a 
Computational Design Consultant at HASSELL, and teaching at The Royal Melbourne 
Institute of Technology in the area of Digital Architecture and Computational Design. He is 
also leading a Master level design studio at the University of Melbourne. He founded 
“Mutation Studio” in 2008; a studio dedicated to architectural design experiments. In 2013 he 
co-founded O(n) Studio as a design-based studio which explores the use of new technology 
in architecture design, design workflows and computational design strategies. 
 
Suleiman worked previously as an architect with COOP HIMMELB(L)AU Vienna, Austria, 
before which he worked with Laceco international. He has practiced architecture in Australia, 
Europe and the Middle East. His work has been awarded, exhibited and published in 
Australia, Italy, Portugal, France, Jordan, China, Hong Kong, Korea and the UK. His current 
research interests include architecture design strategies, digital architecture, BIM 
technologies, and deployable complex kit-of-parts, interactive built environment, and 
fabrication technologies. 
 
 
 
GEOFF KIMM is a software developer, researcher, and graduate architect. He has specified, 
created and worked with complex, high-availability information systems and analysis tools, 
and has degrees in environments, architecture, and science. He is currently leading a 
Master level design studio at the University of Melbourne 
 
He has undertaken university-level research in the fields of computer science and digital 
architecture and has written digital design tools in diverse areas including those of complex 
systems and emergent behaviour, finite element analysis, computer vision, programme 
optimisation, and 3d scanning. His current research interests include urban modelling, 
responsive systems, and inflatable architecture simulation. 
 
In 2013 he co-founded O(n) Studio to explore computational design and its integration in 
architectural practice to solve highly contextual challenges, and implementation of new 
technologies in architecture workflows. 
 
 
 
 
 
 
 
 
 
  



 

3/46 

 
01  Introduction 
 
This workshop will focus on use of computational strategies within Building Information 
Modeling and how this can influence the architecture design workflows in Revit. 
 
 
01.01  The production of computational thought 
 
Computation has a profound impact on both the perception and realisation of architecture 
form, space and structure. It shifts the way one perceives form, the way in which the built 
environment is purposed and the way a design idea is produced. In this workshop we will 
focus on some computational design theory and solutions. Computational design has 
created a positive impact on industry and innovation, and with the introduction of 
computational workflows in Autodesk Revit, we expect that many architecture firms 
(especially the innovative ones) will increasingly implement such approaches in their 
workflows. 
 

 
Flinders St Station_HASSELL & Herzog De Meuron. 
 
 
01.02  Design Computation Era 
 
In recent years, computation has become an established driver for design innovation, as 
seen in the optimised use of computer-aided design (CAD) to create high-profile cultural 



 

4/46 

buildings such as Frank Gehry’s Guggenheim Museum Bilbao and Foster + Partners The 
Sage Gateshead.  
 

 
CAD Eras (Book: Inside Smartgeometry: Expanding the Architectural Possibilities of Computational design : p.40) 
 
The above diagram summarises the history of practical Computer Aided Design: the 2D 
drafting era, the building information modelling (BIM) era, and the computational design era. 
Design computation introduces the distinction between a generative description of a building 
(as a graph or a script) and the resulting generated model. The designer is no longer directly 
modelling the building: instead she or he develops a graph or a script whose execution 
generates the model. 
 
 
01.03  The production of complex forms using design computation  
 
Architecture has become less noisy in its display of the digital, and digital applications have 
assisted the development of better building aesthetics and performance by applying 
computational processes to issues such as material, tectonics, environment and even 
psychological impact. From four or five years ago excitement has centred largely on the 
emergence of new technologies for design strategies at the heart of building and practice 
that use well-refined computational techniques in BIM platforms, and that are applied even 
beyond design and construction to the monitoring and assessment of completed refined 
structures to produce better built environments. 
 



 

5/46 

 

   

 
Complex form finding research projects at O(n) Studio. 
 
 
02  Dynamo 
 
02.01  What is an algorithm? 
 
In general, we approach computational design by dividing the problem into smaller problems 
or procedures to solve it. In computer science, mathematics and even in our field the step-
by-step sequence of processes to solve the problem can be referred to as a definition, script 
or an algorithm. 
 

 
The logic of an algorithm. 
 



 

6/46 

Once we have defined a particular type of problem, a script sequence can be designed 
which allows the computation of a solution of that problem. 
 
02.02 Visual scripting and Dynamo 
 
In recent years, visual scripting was introduced for non-programmers to do what 
programmers do; therefore, designers are able to design their own tools in order to use in 
their design process. This has introduced a new dimension for designers to expand their 
digital toolbox and create more innovative and unique outcomes. 
 
Visual scripting has been used in many areas such as games and illustrations for young 
people using Scratch (http://scratch.mit.edu/) , video and audio editing using MAX MSP, 
video games using uScript, and the most relevant example is design using Grasshopper3D 
in Rhino. 
 

 
Visual scripting using MAX MSP: splitting image/video into 8 equal dimension parts. 
 
Dynamo and its expansion of the functionality of Revit and Vasari is a good example of how 
such tools can be used in BIM to create innovative outcomes. 
 
 
03  Session- Part A 
 
Before attending the workshop we recommend that you install Dynamo 0.6.3 from this 
website http://dynamobim.org/ and familiarize yourself with its interface. 
 
03.00  Installing Dynamo & Interface  
 
Installing Dynamo should be straightforward. It can be installed in either the Revit or Vasari 
environments, but we are dedicating this workshop to the use of Dynamo in Revit and 
specifically in the Massing environment. 



 

7/46 

 
Revit has two environments for the creation of projects: the massing environment which is 
used for early design exploration and the project environment which is used for design 
development and the documentation of a project. Dynamo can be used in the project 
environment for data management and the generation of details and quantities and so on 
which is an interesting area in itself. however we will focus in this workshop on the 
conceptual aspect and particularly on how to expand Revit’s capabilities to create complex 
forms and systems. 
 

 
Revit welcome screen: select new conceptual massing from Families option. 
 
After installing the Dynamo add-in you can open Revit 2014 and use the default massing 
template (metric massing). 
 

 
Dynamo add-in under Add-Ins | Visual Programming. 
 
Dynamo is found under Add-Ins | Visual Programming. 



 

8/46 

 
Dynamo interface. 
 
Once you start Dynamo a new window will appear which can act independently from Revit. 
 
In this workshop we will give an introduction to Dynamo however we assume that most of 
the participants know about Dynamo basics. We recommend that you check the Dynamo 
website for a detailed introduction. The first three steps of this workshop though are 
dedicated to providing a basic introduction. 
 
 
03.01  Dynamo introduction - create a point in Dynamo 
 

 
Dynamo introduction: creating a point. 
 
A point in Dynamo can be created with the XYZ node which takes an input for each of the X, 

Y, and Z values. These values are here specified in a Number node which has been given 

the value 0.0. As the point is to be on the origin the output of this Number node is used for 



 

9/46 

each of the X, Y, and Z inputs of the XYZ node. The output of the XYZ node is here passed 

to a Watch 3D node which allows geometry to be previewed. 
 
The Dynamo script must be run to see its result. This can be done by clicking the Run button 
in the bottom left of the Dynamo window. 
 

 
Dynamo introduction: using sliders and a reference point. 
 
A Number node can be replaced by a Number Slider node or an Integer Slider 
node. To see the effect of this change in the Revit environment (or any XYZ point in 
general), a reference point must be created from XYZ data using a Reference Point 
node. The Dynamo script must be rerun to see the new reference point. 
 
 
03.02  Dynamo introduction - referencing a family in Dynamo 
 

 
Dynamo introduction: referencing a family. 
 
A family in Dynamo can be referenced by the Select Family Type node which allows a 

family loaded into the Revit environment to be chosen. A Watch node is used in this 
example to display the name and ID of the selected family. 
 
 
 
 
 
 
 



 

10/46 

03.03  Dynamo introduction - creating, dividing, and placing components on a curve 
 

 
Dynamo introduction: creating a curve from points. 
 
In this step three XYZ points are created as the basis of a curve. These three points are 
combined into one list in a List node. A curve is created from this list of points in a 

Hermite Spline node. The curve is previewed in a Watch 3D node. 
 

 
Dynamo introduction: dividing the curve. 
 
Division points of the curve created in the previous step are now found by using an XYZ 

Array On Curve node. This node takes a parameter count to which has been connected 

the output of a Number node with a value of 5.0 and therefore five division points are 

created. The division points are previewed in a Watch 3D node. Note that the Watch 3D 
node also displays the curve even though it is not directly connected — this behaviour can 
be turned on or off by right clicking on the XYZ Array On Curve node and toggling the 
Preview Upstream option. 
 



 

11/46 

 
Dynamo introduction: placing components on the curve division points. 
 
The family that was previously referenced is now placed on the curve division points by a 
Create Family Instance node. Note that the family instances cannot be viewed in the 

Watch 3D node. 
 

 
Dynamo introduction: created family instances in Revit. 
 
As a result of the script the referenced family is now instantiated in the Revit environment at 
the division points of the curve. The curve is also present in the Revit environment as in the 
script a model curve was created from the output of the Hermite Spline node by a 

Model Curve node. 
 
 
 
 
 
 



 

12/46 

03.04  [Demo] Phyllotaxis growth 
 

 
Phyllotaxis growth: script output. 
 
This step is to explain some operations and nodes in Dynamo and will illustrate these by 
modifying some parameters to adjust the output of the given script. Afterwards in step 05 
creation of a complex mathematical form using Dynamo will be shown. 
 

 
Phyllotaxis growth: Dynamo script overview. 
 
Open the file Phyllotaxis growth.dyn in the massing environment and you will see the script 
shown above. 
 



 

13/46 

 
Phyllotaxis growth: number nodes in Dynamo. 
 
The script generates points from mathematical formulas. We start by introducing the idea of 
creating a number sequence in Dynamo. To create a series of numbers you can use the 
Number node and specify the start number and the end number using this syntax: ‘start 

number .. end number’., If you need to specify the number of subdivisions between 

the start number and the end number you need to follow it with ‘..#number of 
subdivisions’. For example, ‘1 .. 2 .. #5’ produces the output 1.0, 1.25, 1.5, 1.75, 
2.0. 
 

 
Phyllotaxis growth: change in the value of s - from left to right: 0.25, 0.15 and 0.3  
 
After creating the XYZ coordinates in an XYZ node, you can explore the creation of three 
type of geometries; reference points, circles which have variation in their radii, and curves. 
The ratio of the circle growth can be adjusted by changing the value of s passed to phi2pi 

to, for example, 0.25, 0.15 or 0.3, shown above, and changing the value of Z can create sine 
wave-like curves, shown below. 
 



 

14/46 

 
Phyllotaxis growth: change in z to create sine waves- like curves  
 
 
03.05  Mathematical complex geometries - Nautilus Shell - Part A  
 

 
Mathematical complex geometries: series of points for a nautilus shell generated from mathematical formulas for X, Y and Z 
values. 
 
The link between architecture and mathematics appeared in early design theories and has 
been developed over the centuries. Recently, with the introduction of computational design 
theories and mathematics as a fundamental generator of geometries, it appears as a genetic 
code in architecture design. 
 



 

15/46 

 
Complex mathematical geometry: Nautilus shell script. 
 
The aim of this step is to show how such an application of complex mathematical formulas 
can be achieved in Dynamo. The script for this step is shown above. 
 

 
Complex mathematical geometry: Nautilus shell: creating series of lists  
 
The first part of the script is to create a series of lists to define the domain of the 
mathematical formulas. We start here by creating variable inputs for the numbers — in 
Dynamo we can use either Number nodes or Formula nodes to achieve the this. During 



 

16/46 

the workshop we will discuss how to create cross referenced lists by applying the Repeat 

node and then introducing a data structure by rearranging the lists by using Transpose 
Lists and then Flatten Completely. 
 

 
Complex mathematical geometry: nautilus shell - creating XYZ coordinates by using mathematical formulas  
 
The next step is to apply mathematical formulas using Apply Function nodes to generate 

the X, Y, and Z values and to create XYZ points from those values using the XYZ node. The 
following formulas are used: 
 
X = (pow(sin(u),2) * sin(v)) * pow(1.2,v) *100 
Y = (sin(u)* cos(u)) *(pow(1.2,v)) *100 
Z = (pow(sin(u),2) * cos(v)) * (pow(1.2,v))*100 
 
Then we can connect the XYZ node to a Reference Point node to show the points in the 
Revit massing environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

17/46 

03.06  Mathematical complex geometries - Nautilus Shell - Part B 
 

 
Mathematical complex geometries: outcomes: curves and panels on the nautilus shell. 
 
In this step we will create geometry using the points we have defined for our nautilus shell. 
We will start with curves and will then panelize the shell. 
 

 
Mathematical complex geometries: Dynamo script Creating lines and panelizing the geometry  
 
The extension to the script to do this is shown in the image above. 
 



 

18/46 

 
Mathematical complex geometries: culling the start and end of the list. 
 
In the image above lists are culled to remove identical points to create curves from those 
points in the following instruction. In order to achieve this we trim the list by using a First 

of List node and a Rest of List node; we then reverse the list by using a Reverse 
node and repeat the same process. 
 

 
Mathematical complex geometries: Creating Hermite Splines in U and V directions for the geometry  
 
Next we use a Hermite Spline node to create the curves between the points of each 
sublist. Afterwards we use these curves to create additional curves across them by dividing 
them with an XYZ Array On Curve node to create a list with sublists of XYZ points. This 

new list is then flipped by using Transpose Lists and the result is used to create new 
curves running across the original ones. 
 
From this point on we can use adaptive components and populate them on the geometry. If 
you are using a template other than the one provided in the dataset, you need to load the 
O(n) Studio-Basic roof panel family into the massing file in order to use it in Dynamo. 



 

19/46 

 
Adaptive component: basic extrusion  

 
The adaptive component shown above was created using the adaptive component family 
template. To recreate it you need to place four points on the Level 1 plane (the horizontal 
plane) and select them and then you need to turn them to adaptive. Next you can connect 
those points by using reference lines — make sure that you are activating the 3D snapping 
option in order for lines to follow the points above the working plane. Afterwards you need to 
select the chain of lines and use create form component to extrude the shape in 3D. In the 
workshop we can discuss how to adjust some of the parameters (like extrusion limit and 
material) of this component in Dynamo. 
 

 
Mathematical complex geometries: Populating the adaptive component on the geometry  
 



 

20/46 

In Dynamo you can use some custom components — predefined script elements — 
provided by other users by searching for a package under the Packages menu. We will be 
using Grid to Quads to arrange the points into quads in order to place the basic adaptive 

component which we created earlier. Afterwards we pass the quads to an Adaptive 
Component by XYZs node and also pass in a family type selected in a Select Family 

Type node. For this example, and if you are using the template provided, you should change 
the family type to O(n) Studio-Basic roof panel. 
 
 
03.07  Mathematical complex geometries - Nautilus Shell - Part C 
 

 
Mathematical complex geometries: pavilion created from the nautilus shell. 
 
This part of the session modifies the nautilus shell script used previously to create and 
panelize a small architectural pavilion. The outcome is shown above. There are three main 
steps to do this. 
 

 
Mathematical complex geometries: halving the domain and switching the Y and Z inputs. 
 



 

21/46 

First, change the domain of the shell to create a half shell by adjusting the inputs as shown 
in above left image. Then switch the Y and Z inputs as shown in the above right image. 
 

 
Mathematical complex geometries: modifying the script to create the roof geometry 02. 
 
Second, we need to modify the culling of the points for the curve as we need only to cull the 
list from one side this time. 
 
Third, we will create a new adaptive component. The adaptive component needs to be 
designed properly so it will flex and deform in three dimensions; therefore the geometry 
should adjust itself to any four points in three-dimensional space it may be applied to. 

 
Mathematical complex geometries: completed roof adaptive component. 
 



 

22/46 

 

 

 
Mathematical complex geometries: five steps to create the adaptive component. 
 
There are five main steps to create the roof adaptive component used in this example. 
 

1. Start by opening the adaptive component family template and create 4 points in the 
space. Connect two points with a 3D reference line by activating the 3D snapping 
option. Afterwards connect the other points to the midpoint of the first line.  

2. Create normalized points on the curves — we will use these to keep the same 
geometrical shapes by maintaining the relationship of the line to the other 
geometries.  

3. Connect each dot that was created in the previous step in order to create 3D 
geometry from them. 

4. Extrude the 4 parts of the frame individually. 
5. Create a sweep form for the inside part. For this example we will be using a circle of 

80mm for the main bracing and 50mm for the secondary bracing. 
 
After finishing the file, you can do a final save before loading it to the conceptual massing 
family which is used for our example. You can then change in Dynamo the Family Type 



 

23/46 

Selection node to this family. It is expected that this operation will take up to a couple of 
minutes to process as we are placing a lot of geometry in the file. You can further this 
exercise by creating architecture detailing and structural supports for the panels by using the 
same method. 
 
 
03.08  Questions and answers  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

24/46 

04 Session - Part B:  
 
This part of the session begins by generating UV points within Dynamo to perform 
operations upon a surface. It then presents further examples of mathematical complex 
geometries in Dynamo and a streamlined workflow for switching between formulas within a 
script. The session part concludes with two examples of manipulating adaptive components 
in Dynamo. 
 
 
04.01  [DEMO]  Surface UV points - part A 
  

 
Surface UV points - part A: simple UV grid on a surface. 
 
This introductory example produces a simple n by n grid on a surface. There are four 
significant steps. First, the Select Face node is used to select the surface upon which to 

operate. Second, the Get Surface Domain node outputs the UV domain (the minimum 

and maximum values for both U and V) for the selected surface. Third, the UV Grid node 
divides the given UV domain into n points for each of the U and V dimensions to produce a 
grid of n2 UV points. Fourth, the UV points in the grid are evaluated on the surface in the 
Evaluate Surface node to find the corresponding XYZ points. As the UV grid was 
generated from the same UV domain for that surface the XYZ points fill the surface from 
edge to edge. 
 
The use of UV points is extended in the examples that follow. 
 
 
04.02  [DEMO]  Surface UV points - part B 
 

 
Surface UV points - part B: placement of a single UV point on a surface with Python. 
 



 

25/46 

This example continues the use of UV points and introduces their manipulation in Python by 
creating a Python Script node that allows a single UV point to be positioned on a 
surface. 
 

 
Surface UV points - part B: Python script for positioning a UV point on a surface. 
 
The example is similar to the previous example — the most significant difference is a 
Python Script node is used in place of the UV Grid node. This node has been renamed 

in the script to UV Point. Within the Python Script node a single UV point is created 
within the given surface UV domain, the U and V values of which are generated by the 
following code: 

u = umin + (umax - umin) * uratio 
v = vmin + (vmax - vmin) * vratio 

The new UV point is then created by: 
uv = UV(u, v) 

and is assigned to the output of the Python Script node by: 
OUT = uv 

 
 
04.03  [DEMO]  Surface UV points - part C 
 

 
Surface UV points - part C: random UV points on a surface using Python. 
 
This example extends the use of UV points within a surface UV domain in a Python 
Script node from placing a single point to placing multiple points. It also demonstrates 
using Python to control the position of a family instance on a surface. 
 



 

26/46 

 
Surface UV points - part C: Python script for positioning random UV points on a surface. 
 
The Python Script node creates n UV points randomly positioned within a given surface 
UV domain. The script also allows for a surface UV domain border within to not create UV 
points — this is useful, for example, when otherwise a UV point near the edge of the surface 
might cause a family instance placed on the corresponding XYZ point to overhang the edge 
of the surface. The most significant lines of the script are: 

for i in range(0, count): 
OUT.append(UV(rand(umin, umax), rand(vmin, vmax))) 

To break this down, the line: 
for i in range(0, n): 

means to repeat the indented line(s) following it n times. The function: 
rand(a, b) 

generates a random number in the range a to b. The code: 
UV(u, v) 

creates a new UV point with values u and v, and the code: 
OUT.append(x) 

appends x to the output variable. All this may be written in pseudocode: 
 for count times do the following: 
  add to the output a new random UV point 
 



 

27/46 

 
Surface UV points - part C: tree family instances placed on a surface. 
 
The surface XYZ points corresponding to the generated UV points are found, as in the 
previous examples, by passing them into an Evaluate Surface node. The XYZ points 

are then passed to a Create Family Instance node to create instances of the family 

specified in the Select Family Type node. 
 
 
04.04  [DEMO]  Surface UV spiral  
 
This example focuses on extending the use of UV point specification in Python Script 
nodes to create geometry on a surface. 
 

 
Surface UV spiral: Dynamo script overview. 
 
This script maps a spiral curve onto a surface and then extrudes that curve. It has three 
parts. 

A. Generation and visualisation of the spiral UV set. 
B. Evaluating the UV points on the surface as XYZ points and creating a curve from 

these. 
C. Extrusion of the curve using face normal vectors. 

 



 

28/46 

 
Surface UV spiral - part A: UV Spiral Python Script node mapping a spiral on a UV domain. 
 
In part A, a spiral is generated in UV space in a Python Script node. Note that the UV 

spiral at this stage is not mapped to the surface UV domain. A helper Python Script 

node — Visualise UV — is used at this stage to translate the UV values to XYZ values so 

that they may be viewed in a Watch 3D node. 
 

 
Surface UV spiral - part B: Remap UV Python Script node mapping a UV domain to a target domain. 
 
In part B, the UV spiral is mapped to the UV domain of the target surface in a Python 

Script node, here called Remap UV. If this step were omitted the UV spiral would most 



 

29/46 

likely not match the UV domain of the target UV surface; it would be either too large, or too 
small, or otherwise misaligned. The XYZ points on the surface are then found for the UV 
points by using an Evaluate Surface node. A Hermite Spline node is applied on 

these XYZ points so that the result may be visualised as a curve in a Watch 3D node. 
 

 
Surface UV spiral - part C: Face Normal Python Script node for computing normals of a face for given UV points. 
 
In part C, the XYZ points on the surface calculated in the previous part are extruded. The 
first step is to in a Python Script node, renamed Face Normal, find for each XYZ point 
on the surface the surface normal vector at that location. (Note that the normal is here found 
within a Python Script node to illustrate the use of Python within Dynamo — it would be 

possible to instead use the standard Surface Normal node.) These normals are then 

scaled (using Multiply) and added (using Add) to their corresponding XYZ points.At this 
stage there are two lists of XYZ points: the points for the spiral on the surface and the points 
that have been offset from these. The Line by Endpoints node is used to create a line 

between each pair of points. The Loft Surface node is used to loft a single surface from 

this list of lines, but first the lines are converted to model curves using a Model Curve 
node. 
 

 
Surface UV spiral: curve extruded using face normal vectors. 
 
The result is a surface that follows the geometry of the original surface. This example is 
simple for ease of understanding, but the techniques it shows are applicable to more 
complex situations. Two extensions that are of potential interest and are trivial to implement 



 

30/46 

are to modify or replace the Remap UV node such the input UV pattern is repeated across 
the target surface UV domain, and to, instead of lofting extruded mapped points, loft mapped 
points between two adjacent surfaces. 
 
 
04.05  [DEMO]  Surface UV recursive division 
 
Revit offers ways of dividing a surface according to a pattern but Dynamo allows more 
complex patterns to be applied. This examples shows how Python within Dynamo can be 
used to recursively divide a surface. An adaptive component is then applied to the generated 
points. 
 

 
Surface UV recursive division: example sequence of increasing levels of division detail. 
 
The surface division in this example is a recursive process; that is, the same steps are 
repeatedly applied in a branching execution flow. The recursive algorithm used here works 
by partitioning a given surface UV domain into two parts. Each of these two parts are then 
passed into the same algorithm, and are thus themselves each divided into two parts. These 
parts, of which there are now four (being the result of two lots of two divisions), are treated in 
the same way and the process continues until a limit is reached. 
 

 
Surface UV recursive division: Dynamo script overview. 
 
The general flow of the script in this example is similar to that of the Surface UV points - part 
C example — an operation is performed on a surface UV domain, the XYZ points on the 
surface are found for the UV points, and something is then applied to these XYZ points. A 
significant difference, however, is that an Adaptive Component by XYZs node is used in 

place of the Create Family Instance node. 
 



 

31/46 

 
Surface UV recursive division: UV Recursive Tiles Python Script node for subdividing a UV domain. 
 
The recursive division itself is done in a Python Script node, in this example called UV 
Recursive Tiles. The function definition header within that node: 

def partition(minu, minv, maxu, maxv, dir): 

defines a function called partition and says that it will take five values. The first four of 
these values are to define the minimum U, minimum V, maximum U, and maximum V values 
of the surface UV domain. The last value, dir, defines in which dimension to divide — either 
U or V. The limit of recursion is controlled by the line: 

if (maxu - minu) <= limit or (maxv - minv) <= limit: 

which says that if the UV domain passed into the function is less than limit in either the U 
or V dimensions then the recursive process should not be called further by this instance of 
partition() and the points for the current UV domain should be returned. The recursive 

process is started by the line (which is outside of the partition() function definition): 
OUT = partition(0.0, 0.0, 1.0, 1.0, dir) 

and thus the UV space that is divided spans a rectangle defined by UV(0.0, 0.0) to UV 

(1.0, 1.0). It is therefore only coincidence if the UV domain of the subdivision actually 

matches that of the surface to which it is to be applied — the Remap UV (Python 

Script) node that has been introduced previously is used to ensure that chance does not 
need to be relied upon. 
 



 

32/46 

 
Surface UV recursive division: family instances placed on recursively subdivided surface. 
 
XYZ points on the surface are found for the mapped UV points using the Evaluate 
Surface node. A simple pyramid adaptive component — O(n) Studio: Pyramid — is 

selected in a Select Family Type node and this is applied to the XYZ points by an 

Adaptive Component by XYZs node. 
 
The division of a surface in Dynamo using the general approach shown in this example is 
not limited to using recursion, nor to using only one type of adaptive component, and nor to 
using an adaptive component at all. Possible extensions that could be implemented with only 
minor changes are adjusting and fine tuning the UV Recursive Tiles node logic, using 
different adaptive components on different areas of the surface depending on a particular 
condition, or, without using adaptive components, using the XYZ points to ‘rebuild’ the 
surface or extract geometry according to a certain pattern. 
 
 
04.06  [DEMO]  Surface UV recursive division colouring 
 
This demonstration colours the saved family instances from the surface UV recursive 
division example given above. 
 

 
Surface UV recursive division colouring: Dynamo script overview. 
 
The saved family instances must be loaded in Revit’s project environment for the node that 
performs the colouring, Override Element Color in View, to work. 



 

33/46 

 

 
Surface UV recursive division colouring: getting family instances and element parameter values. 
 
The family type to reference — O(n) Studio: Pyramid — is selected in a Select Family 

Type node and the instances of the family type are found by using the Get Family 

Instance by Type node. The value of the parameter that will be used to determine the 

colour of each instance, in this case Area, is found by using a Get Element Parameter 

Value node. 
 

 
Surface UV recursive division colouring: normalising the Area family element parameter values in Python. 
 
The values of the Area parameter (i.e. those passed from the Get Element Parameter 

Value node) are normalised; that is, they are adjusted to range between 0.0 and 1.0. This is 

performed in a Python Script node renamed in the script to Normalise. These 

normalised values are then passed to a Color Range node and determine a color to use in 
the specified colour range for each family instance. 



 

34/46 

 
Surface UV recursive division colouring: coloured family instances. 
 
The result is that each instance of the O(n) Studio: Pyramid family is coloured in the view 
according to the relative size of its area. Parameters other than area can be used to control 
the colouring, or could be used as the input to other operations in Dynamo. 
 
 
04.07  [DEMO]  Dynamic selection of mathematical surfaces 
 
This example addresses some problems with entering formulas into Dynamo and selecting a 
particular one to use. It also gives further examples of creating mathematical surfaces in 
Dynamo. Python Script nodes are used extensively throughout this example. 
 

 
Dynamic selection of mathematical surfaces: problem - the order of the inputs of the standard Formula node depends on the 
order of variables in the expression. 
 
As shown in the image above, the order of inputs to a Formula node in Dynamo depends 
on the order in which they are used in the expression given in the node (cf. Grasshopper). 
This causes issues when maintaining a script as changing a formula can lead to variables 
being incorrectly used and switching between formulas that have variables in different orders 



 

35/46 

is not easy. If such changes are made the script must be manually updated or, more 
seriously, the need for updating the script is overlooked and errors enter the workflow. 
 

 
Dynamic selection of mathematical surfaces: problem - creating and selecting from a list of formulas is not streamlined. 
 
The image above illustrates a problem with selecting between multiple formulas in Dynamo: 
each formula must be individually entered into its own Formula node. This, in conjunction 

with the Formula node variable order problem given above, means that maintaining a 
variety of formula options when exploring a computational problem is not streamlined. 
 

 
Dynamic selection of mathematical surfaces: simplified script evaluating an expression in a Python Script node. 
 
Python offers a way of evaluating code by calling its eval() function. The sample script 

above uses this by calling the eval() function in a Python Script node called Eval on 

an expression passed in from a String node. This is explained in more detail below. 
 

 
Dynamic selection of mathematical surfaces: Python component for evaluating the expression. 
 



 

36/46 

In the sample script a Python Script node uses the eval() function to evaluate a given 
expression for given U and V values. The appropriate mathematical functions and constants 
are loaded from the Python math library — sin(), cos(), pi, pow(), and so on — 
and the U and V variables for each iteration of the evaluation loop are passed into the 
eval() function using the locals() function. The expression syntax is similar to that of 
the NCalc mathematical expression library used in Dynamo. 
 

 
Dynamic selection of mathematical surfaces: Dynamo script overview. 
 
The Dynamo script for this example allows 31 mathematical surfaces to be selected 
between. The domains for the U and V values and the formulas for the X, Y and Z values are 
each defined in their own String node as a list of 31 lines. The selection of the surface to 
generate — and thus the selection of the corresponding domains and formulas — is dictated 
at a single point within the script. In this example the domains and formulas are given in 
String nodes but it would be possible to instead link these to an Excel worksheet. 
 

 
Dynamic selection of mathematical surfaces: Python Script node for selecting an item from a string list. 
 
A Python Script node allows a single line specified by an index to be selected from a list 
of many. This node is used to select the domains for the U and V values and the formulas for 
the X, Y and Z values from their corresponding string list. 
 

 
Dynamic selection of mathematical surfaces: Python Script node for creating a domain range. 



 

37/46 

 
A Python Script node is used to simplify the specification and generation of domain 

ranges for the U and V values. The node uses the Python eval() function and simple string 
manipulation so that domain ranges may be specified in the same way as in Grasshopper by 
using the syntax “a to b”. 
 

 
Dynamic selection of mathematical surfaces: examples of generated forms. 
 
This example, while limited in its implementation to demonstrating the generation of a 
mathematical form from a selection of 31 possible forms, introduces methods and a workflow 
approach that are extensible to other computational solutions. 
 
 
04.08  [DEMO]  Building a parametric bridge with complex adaptive components 

 
Parametric bridge: with adaptive components that change in size to create lightweight elements. 
 
This example will be detailed in the workshop and is only covered in summary here. It 
illustrates computational design concepts that can also be used to design towers as well as 
roof systems. 
 



 

38/46 

 
Parametric bridge script: part 01/02. 
 
To start this script you need to first open the associated Revit file and then open the Dynamo 
script. The image above and the image below show the overall script in two parts. 
 

 
Parametric bridge script: part 02/02. 
 
The script illustrates how to create a surface using geometry inputs created in Revit and how 
to use an attractor point in Revit to manipulate the panels parameters. It uses the location of 
the attractor point to specify the best location to place the lightweight panels. 
 



 

39/46 

 
Parametric bridge: point and circle Revit geometry input to Dynamo (left), and polygon created from the circle in Dynamo and 
midpoints of the polygon were transferred in 3D (right). 
 
Within the Revit file are a point and a circle created vertically using the point plane and these 
are input into the Dynamo script. We will reference these elements in Dynamo. The overall 
logic of the script is to create a curve that is generated from geometrical operations and 
transformations on the referenced point and circle, then apply a sequential rotation to this 
curve, and then divide the resulting curves into panels. 
 

 
Parametric bridge: Creating the bridge curve to be rotated in the next step. 
 
After creating points from the input geometry particular list operation nodes — Build 
Sublist, List, and Transpose Lists — are used to reorganize the points to later 
create splines. 
 



 

40/46 

 
Parametric bridge: applying transform operations to array the curves with sequential rotation. 
 
Next, multiple copies of the first section (represented as a point list) are made and then 
moved by adding to each an XYZ point with an Add XYZs node. These XYZ points are 

generated by connecting the output of a Number Sequence node to the X input on an XYZ 
node — the XYZ points will effectively act as movement vectors. 
 

 
Parametric bridge: arrayed rotation of splines. 
 
At this stage we will also create splines by using a Hermite Spline node and we can then 

apply a sequential rotation to those curves with a Transform Curve node that accepts as 

input a Rotate Transform node. 
 



 

41/46 

 
Parametric Bridge: Creating the surface. 
 
From those curves we can create a surface by lofting with a Loft Surface node. In order 

to do this we need to convert the list of curves to model curves with a Model Curve node. 
 
 
 

 
Parametric bridge: creating nest-like curves to represent structure/division for panels. 
 
The next step of the workflow divides the curves and connects the division points to create a 
nest like frame. 
 



 

42/46 

 
Parametric bridge: transformed curves. 
 
The above image shows the effect of the transformed curve network. 
 

 
Parametric bridge: populating the pattern-based components. 
 
In last stage of the script we will populate the pattern-based components (nested families) to 
the quad points in a way similar to that used in section 04.06 of this document. We will 
define the size of the components by creating an attractor point in Revit. To achieve this we 
need  to calculate the distance between the attractor point and the approximate centre of 



 

43/46 

each panel. In the workshop we will discuss ways to achieve this, however in the script there 
is one solution specified. 
 
This script is interesting not only for form generation and structural logic, but also has 
potential for environmental solutions as well. 
 
 
04.09  [DEMO]  Complex animated window fin systems 
 

 
Left : animated fin systems with a gradient change in color properties done using Dynamo. 
Right: case study (similar project): Liverpool Villahermosa Department Store by Iñaki Echeverria  souce: 
http://inhabitat.com/liverpool-villahermosa-department-store-gets-a-twisting-concrete-double-skin/liverpool-villahermosa-jaime-
navarro3/ 
 
This example illustrates manipulating parameters for each of a series of adaptive 
components. The resulting geometry has a precedent in the Liverpool Villahermosa 
Department Store by Iñaki Echeverria. 
 

 
Complex animated window fin systems: animated fin systems using irregular curves input with a gradient colour change. 



 

44/46 

 
An adaptive component fin is arrayed along two curves and three variations are introduced: 
the dimension of the middle of the component, the twist of the component, and the material 
of the component. 
 

 
Complex animated window fin systems: Dynamo script overview. 
 
The script will be demonstrated in detail in the workshop. The script flow has six significant 
steps which are described below. 
 

 
Complex animated window fin systems: selecting curves and finding division points. 
 
First, two curves are selected from the Revit environment and division points are found by 
XYZ Array On Curve nodes. 
 

 
Complex animated window fin systems: selecting and arraying the family. 
 
Second, the adaptive component is selected in a Select Family Type node and arrayed 

along a curve by an Adaptive Component by XYZs node. 
 



 

45/46 

 
Complex animated window fin systems: adjusting the dimension of the middle of the adaptive component. 
 
Third, the dimension of the middle section of the adaptive component is adjusted by a Set 

Element Parameter node based on a parameter Dm passed in from a String node. 
 

 
Complex animated window fin systems: loading and sampling the image and adjusting the twist of the adaptive component. 
 
Fourth, an image file is loaded in a Read Image File node. The image is sampled by a 

Color Brightness node and the resulting value is used to control the twist of the 

adaptive component instances by a Set Element Parameter node based on a 

parameter Rm passed in from a String node. 
 

 
Complex animated window fin systems: loading materials and combining them into a list. 
 
Fifth, six materials are each loaded in a Get Material by Name node and these are 

combined into a list in a List node. 
 



 

46/46 

 
Complex animated window fin systems: applying materials (with the oscillating material sequence connected). 
 
Sixth, the materials are applied to the adaptive component with a Set Element 

Parameter node based on a parameter MaterialColor passed in from a String node. 
Two ways are given for organising the materials; one creates an oscillating sequence from 
the material list using Reverse and Repeat nodes and the other creates a random 

sequence from the material list using the Repeat and Shuffle List nodes. 
 
 
04.10  Questions and answers 
 
 
 
 
 
 
Further enquires:  
_O(n) Studio email: design@onstudio.co  
 
 
05 References:  
 
_O(n) Studio Dynamo resources http://onstudio.co/ 
_Dynamo website: http://dynamobim.org/ 
_Dynamo in Autodesk Vasari: http://autodeskvasari.com/dynamo 
 


